If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-55x-48=0
a = 13; b = -55; c = -48;
Δ = b2-4ac
Δ = -552-4·13·(-48)
Δ = 5521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-\sqrt{5521}}{2*13}=\frac{55-\sqrt{5521}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+\sqrt{5521}}{2*13}=\frac{55+\sqrt{5521}}{26} $
| x+1/3-2x+1/4=1 | | 1/3+x=4/7 | | 3-(7x+1)=-5(x+3)-8 | | 3x-5=60/3 | | -11-7x=109-28x | | 14x^2+49=0 | | 5+3x-2=9+2x | | 0=x^2+3.5 | | 3(x-4)^2+6=0 | | -7-2x=11-8x= | | 2w+17=13 | | 2.2x=9.4x | | 2+(3x)=2+(x3) | | -6=-2(x-9 | | 00x-18=-2 | | x.198=59.4 | | (6+2x)(8+2x)=80 | | 4(x+1)=3(x+8) | | 4(x+1)=3(x+8 | | -4(3-6d)=9(2d-27) | | 7-3(14-2x)=2(x+5)+6x | | C(x)=180+8*20 | | B=8x(2x+10) | | 12.50+6a=71.00 | | (7x^2+21x-28)=0 | | (7x^2+21x28)=0 | | 9a+6=7+11a | | 23=5x-1/6+3x+9/2 | | 5x-10(3)=45 | | (X-6)^2=2x^2-11x+30 | | m6=21 | | 3x+6=36. |